请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

顶点笔趣阁 ddbiquge.co,异世界征服手册无错无删减全文免费阅读!

    考虑到一些鲜为人同学的好奇心,

    这里用尽量通俗的方式解释一下光子――或者说量子纠缠的概念。

    基本上只要你看得懂文字,应该都可以理解。

    首先举个例子。

    假如说在太空中两个挨在一起静止的相同圆盘,被一个姓郝的炸逼用炸弹炸开。

    它们两个因此开始有了一个旋转。

    当它们飞了很远之后,我们捕获了其中的一个圆盘并且对它进行测量。

    并且发现它的旋转角速度为w。

    那么我们立刻可以知道,另一个圆盘的角速度一定是-w。

    因为根据角动量守恒,两个圆盘的角动量之和一定为零,所以它们两个的旋转角速度一定是相反的。

    也就是w和-w相抵消。

    而量子纠缠有些类似。

    当一对有量子纠缠的光子,往相反方向飞了很远之后,我们捕获了其中的一个光子。

    测量得到它的偏振方向是逆时针偏振的。

    那么在这一瞬间,我们就可以知道在很远的另一个光子它的偏振方向是顺时针偏振的。

    看到这里,或许有人就会觉得说。

    那么量子纠缠看上去并没有什么特别的呀,那么为什么会被讨论的那么多?

    量子纠缠的实验和前面那个经典世界里面的实验区别到底在哪里呢?

    最主要的一个区别就是,在经典世界里面,在爆炸之后的那一瞬间,两个圆盘的状态就已经是确定了的。

    无论我们在什么时间和位置去测量,得到的都会是同样的结果。

    可是在量子纠缠的实验里面。

    两个光子往相反方向飞行的途中,其中每一个光子的偏振方向并不是确定的。

    而是处于50%的概率顺时针偏振和50%逆时针偏振相叠加的量子态。

    你测量的结果有50%的概率是顺时针偏振,有50%的概率是逆时针偏振。

    这个光子的状态只有在你测量的时候才能确定,而且完全是一个概率性事件。

    这代表着什么呢?

    最关键的地方来了。

    就是说你测量了其中一个光子,这一个光子的状态坍缩成了比如说顺时针偏振。

    在遥远地方的另一个光子,它的状态就同时坍缩成了确定的逆时针偏振。

    仿佛这两个光子间有一个可以超越光速的联系,可以让它们瞬间可以达成共识。

    具体的实验过程就是纠缠光子对利用二类BBO晶体的自发参量下转换,可以产生两个偏振态正交的纠缠光子对。

    再利用检偏器以及单光子计数器测量就可以完成了。

    相关论文还是挺多的,这里就不多赘述了,也没必要了解太深。

    当然了。

    或许有同学会问一个更深一步的问题:

    你怎么知道在测量之前量子的状态是不确定的?

    难道就不能它在客观上已经确定的?

    也就是这边的这个光子早就是顺时针偏振,而另一个光子则是逆时针偏振。

    只是我们观测之前未知它们的状态而已?

    这就涉及到一个叠加态的问题了。

    贝尔不等式结合实验结果来看,证明了量子在被观测前是处于叠加态的。

    这是啥意思呢?

    也就是说同样的光子,你在头一次测量的时候可能是顺时针偏振。

    可换个基矢第二次就成逆时针偏振了。

    比如你面前有两台冰箱,A里头放着一枚鸡蛋,B里头放着一块牛肉。

    你头一次开A发现是个鸡蛋,同时不用看B就知道B那边一定是牛肉。

    可当你关上A再开,第二次里面却变成了牛肉,而你除了关门其他啥事也没干。

    第三次它又变回了蛋。

 &n... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”